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Abstract We tested the hypothesis that otolith trace
elemental signatures (microchemistries) of mottled scul-
pin Cottus bairdi, slimy sculpin C. cognatus, and juvenile
coho salmon Oncorhynchus kisutch were predictive of
those of juvenile steelhead O. mykiss across many sites
within the Lake Michigan basin. Laser ablation induc-
tively coupled plasma mass spectrometry was used to
generate otolith microchemistry signatures for each indi-
vidual fish. For each species pair, statistical correlations
of mean otolith concentrations of Mg, Mn, Cu, Zn, Sr,
Ba, and Pb for each site were estimated. Linear equations
describing these relationships were used to transform
juvenile steelhead otolith microchemistry data to those
of each of the other species. Transformed otolith
microchemistry data were subjected to random forest
classifications developed for mottled sculpin, slimy scul-
pin, and juvenile coho salmon to assess interspecific natal
source assignment accuracies. Steelhead otolith concen-
trations of Sr were significantly correlated with those of
each of the other species, whereas otolith concentrations
of Ba and Mn were significantly correlated among some
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species pairs, but not others. Natal source assignment
accuracies of juvenile steelhead to site and watershed
generally decreased when otolith microchemistry data
were transformed to those of mottled sculpin, slimy
sculpin, and coho salmon. Miss-assigned fish often clas-
sified into nearby watersheds within larger hydrologic
units, leading to higher assignment accuracies at coarser
geographical resolutions (75-97% correct assignment to
hydrologic unit for each species). These findings suggest
that applications of otolith microchemistry data may
extend beyond the species from which they are collected.

Keywords Otolith microchemistry - Mixed-stock
fishery - Oncorhynchus - Cottus - Lake Michigan - Great
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Introduction

Otolith trace elemental signature (microchemistry) anal-
ysis is becoming an increasingly important tool used to
reconstruct environmental histories of fish (Campana
1999; Campana and Thorrold 2001; Pracheil et al.
2014). Otoliths are paired, calcified structures located
near the brain of teleost fish that are important for fish
hearing and orientation. Otoliths of fish residing in dif-
ferent environments have been shown to exhibit differ-
entiable microchemistries, due in large part to intrinsic,
regional differences in ambient water properties among
fish habitats (Campana and Thorrold 2001; Elsdon et al.
2008; Sturrock et al. 2014). Because otoliths grow con-
tinuously and do not undergo chemical resorption, these
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trace elemental signatures serve as a permanent chrono-
logical record of the environment(s) in which a fish has
resided during its lifetime (Thresher 1999; Campana and
Thorrold 2001). A primary application of otolith
microchemical signature analysis has been to develop
classification models using measurements obtained from
fish of known environmental histories (e.g., stock, natal
source, migration patterns, etc.) and apply these to fish
whose environmental history is unknown and of interest
(Mercier et al. 2011; Tanner et al. 2016). Such research
and applications have generally been intraspecific in
scope. However, otolith microchemical signatures are
natural tags imparted on all bony fishes occupying a
particular location, and the extent to which interspecific
relationships exist between the otolith microchemistries
of the different species of fish that share aquatic habitats
remains largely unexplored. If significant interspecific
relationships exist for trace elements that exhibit variation
among natal sources, then otolith microchemistry signa-
tures obtained for one species may be used to predict
those of co-occurring species for which natal source
otolith microchemistry information is unavailable
(Hamer and Jenkins 2007). In this study, we test the
hypothesis that predictive relationships exist between
the otolith microchemistries of four co-occurring fish
species across multiple sites over the Lake Michigan
drainage basin.

Our study was focused on the North American Great
Lakes, where a multispecies assemblage of introduced
migratory Pacific salmonines (genus Oncorhynchus)
supports highly valued and intensively managed recre-
ational fisheries (Tanner and Tody 2002; Thayer and
Loftus 2013; Tsehaye et al. 2014; Clark Jr et al. 2016).
Chinook salmon Oncorhynchus tshawystcha, coho
salmon O. kisutch, and steelhead O. mykiss are stocked
annually throughout much of the Great Lakes basin
(Crawford 2001; Claramunt et al. 2013), and natural
reproduction helps to support diverse mixed-stock fish-
eries of each species (Claramunt et al. 2013; Claramunt
and Clapp 2014). To promote ecosystem stability and
resilience, there is a strong desire among Great Lakes
management agencies to undertake strategies that pro-
mote self-sustaining fish stocks (Eshenroder 1990;
Jonas et al. 2008; Great Lakes Fishery Commission
2011). However, the composition of the intermixed
Great Lakes fisheries, with respect to the natal sources
of naturally reproduced individuals, is largely unknown.
Accurate information on the natal sources of adult fish
caught in each fishery is needed to quantify wild
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salmonine recruitment dynamics, and in turn, identify
the factors underlying these dynamics at appropriate
spatial scales.

Thus far, stock delineation of naturally-reproduced
Pacific salmonines in the Great Lakes has been ham-
pered by the logistical and economic impracticalities of
collecting and uniquely marking (e.g., tag, fin-clip) a
large number of wild juveniles from enough natal
sources and year-classes to ensure sufficient sample
sizes of marked adult fish are later recovered. Low
genetic differentiation among populations of introduced
salmonines in the Great Lakes would likely preclude
identification of natal sources using genetic markers
(Bartron and Scribner 2004; Weeder et al. 2005). Prom-
isingly, Marklevitz et al. (2011) classified wild juvenile
Chinook salmon with 87% accuracy among sites within
the Lake Huron basin using otolith microchemistry
analysis, and Marklevitz et al. (2016) applied similar
methods on unknown-origin adult Chinook salmon cap-
tured in the recreational fishery to assess temporal and
spatial variability in stock admixture. Additional studies
have successfully applied otolith microchemistry to dis-
tinguish environmental histories for multiple species in
the Great Lakes region (Pangle et al. 2010; Reichert
et al. 2010; Boehler et al. 2012; Schoen et al. 2016),
suggesting that differences in otolith microchemistries
may be conserved across species.

We collected and statistically compared otolith
microchemistry data from multiple co-occurring fish spe-
cies among 16 cool- and coldwater sites widely distributed
across the Lake Michigan drainage basin. In a separate
investigation, we had built an otolith microchemistry data-
base for juvenile steelhead from >30 sites across the Lake
Michigan basin, so age-0 steelhead chemistry data were
already in-hand for sampling years 2014 and 2015 (Wat-
son et al. 2018). To perform among-species comparisons,
16 sites were revisited in 2015 and 2016 and sampled for
sculpin (Cottus spp.) and age-0 coho salmon (species that
were most commonly observed co-occuring with age-0
steelhead), as well as additional age-0 steelhead. The spe-
cies selected for investigation all exhibit behavior particu-
larly conducive to stock delineation via otolith
microchemistry analysis. For both steelhead and coho
salmon, the juvenile in-stream phase is particularly impor-
tant for recruitment, and they typically reside in their natal
source for more than one year. The longer river residence
time ensures that natal source signatures are present in a
substantial portion of their otoliths (in contrast with Chi-
nook salmon that smolt at age-0). Both sculpin species
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have typical home ranges in streams that are <50 m, with
movement distances rarely exceeding 0.5 km (Keeler
2006; Breen et al. 2009). Thus, the otolith microchemical
signatures of these sculpin are expected to reflect the
histories of the ambient environmental properties of the
sites sampled over the lifespans of the sculpin analyzed
(Brennan et al. 2015). Herein, we tested the hypothesis that
the otolith microchemistries of mottled sculpin Cottus
bairdi, slimy sculpin C. cognatus, and coho salmon were
predictive of those of juvenile steelhead by assessing the
significance of the interspecific correlations of the otolith
concentrations of each trace element measured.

Methods
Sample and data collection

Fish collected for this research are described in Table 1.
Sites chosen (Fig. 1) were within watersheds previously
shown to support successful anadromous salmonine
natural reproduction (e.g., Avery 1974; Seelbach and
Whelan 1988; Rutherford 1997; Hirethota and

Burzynski 2015), and from which sculpin were ob-
served to be abundant in sampling events prior to this
study. Because steelhead were collected in 2014, prior to
when sculpin started being collected in 2015, we fo-
cused analyses generally on sculpin age-2 and older
(identified from length-frequency histograms) in order
to encompass the age-0 duration of the steelhead col-
lected in 2014. More sculpin than those analyzed in the
study were collected, so the samples sizes for the length-
frequency assessment were large enough to allow us to
easily discriminate age-0, age-1, and age-2+. All sam-
ples were collected using backpack electrofishing and
stored frozen in ice until lab processing.

Upon processing, fish were thawed and total lengths
measured to the nearest mm. Sagittal otoliths were re-
moved from each fish, cleaned of adhering tissue and
endolymph using hydrogen peroxide, rinsed with
reverse-osmosis water, and placed in sorting trays to
dry. For each fish, a single otolith was mounted in Epofix
cold-setting embedding resin in silicone molds and
allowed to harden for at least 48 h. A PICO155 Precision
Cutter saw (Pace Technologies, Tucson, AZ) outfitted
with four-inch diamond wafering blades was used to

Table 1 The number of age-0 steelhead, age-0 coho salmon, mottled sculpin, and slimy sculpin from which otoliths were analyzed in this

study, collected in years 2014, 2015, and 2016

Sample size (2014, 2015, 2016)

Hydrologic unit Watershed ID Site name Steelhead Coho salmon Mottled sculpin  Slimy sculpin
NW Lake Michigan Fischer Cr A  Fischer Cr 0,10,0 0,0,0 0, 16, 20 0,0,0
NE Lake Michigan  Black R B BlackR 10,10,0 0,0,0 0,0,0 0,19, 18
Boardman R C KidsCr 11,10,0 0,20, 20 0,0,0 0, 20, 20
Betsie R D Little Betsie R 0,10,0  0,20,20 0, 14,20 0,0,0
Manistee R E Bear Cr 10, 10,0 0,10, 20 0,17,20 0,0,0
F  Pine Cr 12,10,0 0,13,19 0,0,0 0, 20, 17
Little Manistee R G Cool Cr 0,10,0 0,13,0 0, 20, 19 0,0,0
H Little Manistee R 10, 10,0 0,20, 20 0,11, 17 0,0,0
I Twin Cr 11,10,0 0,0,0 0,0,0 0,20, 19
Pere Marquette R J  Little S Br Pere Marquette R 10, 10,0 0, 20, 19 0,11,19 0,0,0
K Middle Br Pere Marquette R 10, 10,0 0, 20, 14 0,0,0 0, 20, 20
L  Weldon Cr 9,10,0 0,20, 18 0,0,0 0,20, 19
Muskegon R M Bigelow Cr 10,10,0 0,0,0 0,20, 19 0,0,0
SE Lake Michigan ~ Grand R N  Egypt Cr 0,13,0 0,0,0 0,20, 19 0,0,0
Kalamazoo R O Silver Cr 11,10,0 0,0,0 0,17, 11 0,0,0
St. Joseph R P  Townsend Cr 10, 10,0 0,20, 19 0,9,20 0,0,0

Site IDs are used in Figure 1 to depict the location of the sites sampled. Hydrologic units are defined at the U.S. Geological Survey

hydrologic unit code 6 level
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Fig. 1 A map of the study area. The cross-hatched regions repre- located. The mouths of each of the ten watersheds are labeled in
sent the three hydrologic units (U.S. Geological Survey hydrologic the space corresponding to Lake Michigan. The hydrologic units,
unit code 6) from which fish included in this analysis were col- clockwise from top left, are Northwestern Lake Michigan, North-
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watersheds within which sample sites (bold letters; Table 1) were

cut thin sections of the embedded otoliths. These thin that the polished sections were smooth and absent of any
sections were hand-polished to the plane of the core deep scratches using a microscope. Polished thin sections
sequentially with 600 and 1200 grit silicon carbide paper were then mounted onto etched petrographic slides using
followed by 1 um Alumina polishing film. We checked super glue (Loctite, Westlake, OH). The day prior to
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chemical analysis, the mounted slides were sonicated in
ultrapure water (18.2 M{2-cm) for seven minutes and
stored in a laminar flow hood to air dry.

Otolith sections were analyzed for trace elements
using laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) at Central Michigan
University’s Center for Elemental and Isotopic Analy-
sis. Laser ablation was performed using a Photon Ana-
lyte 193 nm Excimer laser system in conjunction with a
computer operated X-Y-Z sample chamber following
methods similar to those used by Schoen et al. (2016).
Ablated material was carried from the sample chamber
to a Thermo-Finnigan Element 2 ICP-MS unit using
helium carrier gas (1.6+0.2 L/min) to which argon
makeup gas (1.2+0.15 L/min) was added. LA-ICP-
MS operating parameters were tuned to achieve a thori-
um to uranium ratio (***Th: 2*®*U) of 1.0, and a thorium
oxide to thorium ratio (***Th'®0: 2**Th) of <1.0% at the
start of each session. Laser fluence was estimated to be
within 3-6 J/em’.

We measured the signal intensity (in counts per sec-
ond) of magnesium (25Mg), calcium (**Ca), manganese
(55 Mn), copper (65 Cu), zinc (66Zn), strontium (8SSr),
barium ('*’Ba), and lead (***Pb). Data were collected
for a transect running from 200 pm opposite the primor-
dium to the otolith edge (2-6 pum/s velocity, 40 um
circular spot size, 70% laser output). In all cases, the
path of the transect was perpendicular to the growth
circuli. To remove surface contamination prior to anal-
ysis of each otolith section, a double-pulse of an 80 um-
wide raster was ablated along the length of the transect.
To correct for instrument measurement drift, at the start
and end of each daily analytical session, as well as every
60-90 min during analysis, the international glass refer-
ence material NIST 612 was analyzed (4 x 140 um tran-
sects). Three transects each of the NIST 610 and
MACS3 (USGS carbonate standard) reference materials
were also analyzed at the beginning and end of each
daily session as internal check standards.

Trace element concentrations in the otoliths were deter-
mined using the Trace Element Internal Standardization
Routine within the Iolite mass spectrometry software pack-
age (version 2.31; Paton et al. 2011). Calcium was used as
an internal standard at 40% weight as in stoichiometric
calcium carbonate relative to the NIST 612 glass concen-
tration values reported in the GeoReM database (Jochum
et al. 2005). For every sample and standard analysis, 30—
50 s of carrier/makeup gas (He and Ar) background signal
was measured prior to laser ablation to quantify trace

element background signals that were subtracted from
the raw isotope count rates measured during ablation.
Background-corrected isotope count rates were further
adjusted and converted to parts per million (ppm) based
upon the known and measured isotope:Ca ratios in the
NIST 612 standards bracketing each sample. Although we
only measured one isotope of each element, we report total
elemental concentrations based upon the known, naturally-
occurring isotopic abundances of each respective element.

Analysis

For each sample, median concentrations of each trace
element were calculated from the primordium to the
otolith edge. The position of the primordium was visu-
ally identified by generating seven-panel plots of the
trace element signatures (i.e., each trace element plotted
individually) for each fish and locating the position of
the transect around which symmetry of patterning of the
concentrations could be observed in a consensus of the
trace elements measured. We chose to use median trace
elemental concentration values in favor of means due to
non-normality in the distributions of the data that was
not resolvable among all samples with any particular
data transformation. Preliminary analyses performed
using mean trace elemental concentration values, how-
ever, showed very similar results.

For each site, we averaged the median trace elemental
concentrations among all steelhead and linearly regressed
these against those of coho salmon and both sculpin
species. To assess which elements exhibited significant
interspecific patterns, we calculated interspecific Pearson
correlation coefficients for each element. Significance of
the correlations is reported at an a level of 0.05.

We then assessed the degree of importance of each trace
element for correctly assigning fish to their site of origin.
To do this, random forest (RF) classifications (Breiman
2001) were developed for each species and the variable
importance of each element was determined. For
straightforward descriptions of the RF classification
method employed, we direct readers to Liaw and Wiener
(2002, p. 18) and Mercier et al. (2011, pp. 1355-1356). In
the RF classification for each species, the levels of the class
target comprised the set of sites from which that species
was sampled, and the interval input variables were the
median concentrations of the seven trace elements mea-
sured for each fish. We implemented these classifications
in R (R Core Team 2016) using the default settings of the
randomForest() function (randomForest package; Liaw
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and Wiener 2002). For the RF classification of each spe-
cies, variable importance (/) was determined for each
element as the mean decrease in classification accuracy
when that particular element was permuted across all trees,
and all other elements were left unchanged (Liaw and
Wiener 2002).

Lastly, we transformed the steelhead otolith trace
elemental concentrations to those of each of the other
three species using the equations determined from the
aforementioned interspecific linear regressions. We then
applied the coho salmon, mottled sculpin, and slimy
sculpin RF classifications to the corresponding trans-
formed steelhead otolith microchemistry data to assess
how well each of these species could inform steelhead
natal source assignments. We present these results in
terms of the proportion of steelhead correctly assigned
to their natal source at three spatial resolutions — site,
watershed, and hydrologic unit. Hydrologic units are
defined at the U.S. Geological Survey hydrologic unit
code 6 level. The watershed spatial scale was based
upon river networks that shared a common outlet to
Lake Michigan (or Manistee Lake for the Manistee
and Little Manistee rivers watersheds) (Fig. 1; Table 1).

Results

Of the trace elements measured, otolith concentrations
of Sr, Ba, and Mn, were the most correlated between
all species pairs examined (Table 2). There were sig-
nificant relationships between steelhead and coho
salmon for otolith Sr and Ba concentrations, between
steelhead and mottled sculpin for otolith Sr and Mn
concentrations, and between steelhead and slimy scul-
pin for otolith Sr, Mn, and Ba concentrations
(Table 2). Otolith concentrations of Mg, Cu, Zn, or
Pb were not significantly correlated among any of the
species pairs. Relationships between species pairs of
otolith elemental concentrations followed a generally
linear pattern (Fig. 2). Examination of the regressions
with respect to the 1:1 relationship line indicates that
incorporation of Sr into the CaCOj; otolith matrix
tended to be lower for juvenile steelhead than the other
three species (Fig. 2). Juvenile steelhead also incorpo-
rated Ba into their otoliths at lower concentrations than
coho salmon, while otolith concentrations of Mn were
higher for steelhead compared to both mottled sculpin
and slimy sculpin (Fig. 2).
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RF classifications revealed that Sr, Ba, and Mn were
also the three most important elements for correctly clas-
sifying coho salmon, mottled sculpin, and slimy sculpin to
their sites of origin (Table 3). For steelhead, Sr and Ba were
the two most important elements, followed by Mg and
then Mn (Table 3). Distributions of the individual otolith
concentrations of Mn, Sr, and Ba showed varying degrees
of overlap and variability by site and hydrologic unit for
steelhead and coho salmon (Fig. 3) and the two sculpin
species (Fig. 4).

Steelhead RF classifications based upon the steelhead
otolith microchemistry data supported classification ac-
curacies of 70% to site, 73% to watershed, and 89% to
hydrologic unit (Table 4). When steelhead otolith
microchemistry data were transformed, based upon the
regression equations determined for the otolith
microchemical relationships between steelhead and mot-
tled sculpin, and subjected to the mottled sculpin RF
classification, assignment accuracy rates of steelhead
were 55% to site, 57% to watershed, and 75% to hydro-
logic unit (Table 4). When steelhead data were trans-
formed according to the regression equations determined
between steelhead and slimy sculpin, and subjected to the
slimy sculpin RF classification, assignment accuracies for
steelhead were 67% to site, 72% to watershed, and 100%
to hydrologic unit (Table 4). When steelhead data trans-
formed according to the regression equations determined
between steelhead and coho salmon, and subjected to the
coho salmon RF classification, assignment accuracies for
steelhead were 39% to site, 45% to watershed, and 97%
to hydrologic unit (Table 4). Note that individual fish
could only assign to sites, watersheds, or hydrologic units
for which there were data for each respective species pair.
In the cases of the slimy sculpin and coho salmon RF
classifications, this particularly limits classification op-
tions. To illustrate, otolith microchemistry data of steel-
head from Fischer Creek were not transformed and sub-
jected to the slimy sculpin model, nor could individual
steelhead be assigned to Fischer Creek based upon the
slimy sculpin model, because the slimy sculpin model
was not informed by slimy sculpin collected from Fischer
Creek.

Discussion
We tested the hypothesis that for elements whose otolith

incorporation is highly correlated with environmental con-
centrations, spatial variability in otolith microchemistries
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Table 2 Pearson correlation coefficients (R), degrees of freedom
(df), and associated p-values describing the correlations between
median individual steelhead otolith trace elemental concentrations

and those of coho salmon, mottled sculpin, and slimy sculpin
among all sites where each species pair was sampled

Element

Statistic Mg Mn Cu Zn Sr Ba Pb
Steelhead ~ coho salmon

R —0.16 031 0.33 0.01 0.89 0.75 0.11

df 8 8 8 8 8 8 8

P 0.67 0.38 0.35 0.97 <0.01 0.01 0.34
Steelhead ~ mottled sculpin

R 041 0.81 0.11 —0.12 0.94 0.54 —0.18

df 8 8 8 8 8 8 8

P 0.24 <0.01 0.77 0.75 <0.01 0.11 0.63
Steelhead ~ slimy sculpin

R —-0.44 0.95 -0.52 -0.33 1.00 0.83 —0.05

df 4 4 4 4 4 4 4

P 0.38 <0.01 0.29 0.52 <0.01 0.04 0.93

Significant relationships (o = 0.05) are bolded

should show similar patterns among co-occurring species
(Hamer and Jenkins 2007). We found significant interspe-
cific relationships between otolith concentrations of Sr
among all species pairs assessed, as well as Ba in two of
three species pairs examined (Table 2). These elements are
primarily incorporated into otoliths via cation substitution,
which is ideal because otolith concentrations of elements
incorporated in this manner are most likely to reflect
physicochemical water properties of the environment in a
consistent, predictable way (Campana 1999; Doubleday
et al. 2014). Thus, our findings support the hypothesis of
Hamer and Jenkins (2007). Over a similar geographical
extent, Schoen et al. (2016) found positive linear relation-
ships between water and otolith Sr:Ca and Ba:Ca of yellow
perch Perca flavescens from 12 wetland sites throughout
lakes Huron and Michigan. Schoen et al. (2016) did not
find significant relationships between water and otolith
element:Ca ratios for Mg, Cu, or Zn, and did not draw
conclusions about Mn and Pb because they were below
detection limits in many samples. Our finding of signifi-
cant interspecific relationships between the otolith Mn
concentrations of juvenile steelhead and those of mottled
and slimy sculpins (Table 2) is contrary to expectations for
this physiologically essential element. Nonetheless, Mn, in
addition to Sr and Ba, is often an important trace element
for interpreting fish environmental histories (reviewed by
Pracheil et al. 2014). Future research should examine the

extent to which this finding may be driven by spatial
differences in environmental Mn:Ca between sites.

With our configuration of otolith microchemistry
data, we sought to extract a meaningful value (central
tendency) for each element measured that encapsulated
all potential sources of variation intrinsic to each species
at each site. Our purpose was not to quantify sources of
intra- and interspecific variation in otolith chemistry, but
to harness, to the extent that they exist, central tenden-
cies in otolith chemistries for a given species at a given
site that transcend the interrelated (co-varying) sources
of variation, themselves. In order to do this, we purpose-
ly used multiple collection years, as well as data from
the primordium to the otolith edge to characterize the
entire lives of the fish prior to capture, similar to
solution-based ICP-MS of whole otoliths (Edmonds
et al. 1989; Moreira et al. 2018). We concede that, for
a given species, intra-site variability in the median con-
centrations of the elements we measured may be higher
relative to inter-site variability than it would have been if
we focused on a narrow portion of the otolith. However,
in doing so, we would lose information about site, which
is our independent variable of interest, and we would
potentially introduce error associated with identifying
growth increments (Campana 1999).

When environmental variability in (element:Ca)y e
exists among different fish habitats, researchers and
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Fig. 2 Linear regressions of the interspecific otolith
microchemistries between species. Points correspond to the aver-
age of the median individual elemental concentrations at each site

managers seeking to describe patterns of fish habitat use
can use otolith microchemistry analysis as a tool for
discriminating fish environmental histories (Campana
and Thorrold 2001; Pracheil et al. 2014; Tanner et al.
2016). Our findings suggest that such environmental
variability exists across the Lake Michigan basin. Envi-
ronmental concentrations of both Ca and inorganic trace
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Slimy sculpin [Mn] (ppm)

for which both species were sampled. Error bars represent one
standard error. The solid line represents a 1:1 relationship, and the
dashed line depicts the least-squares regression equation

elements play important roles in contributing to differ-
entiable otolith microchemistries among freshwater
fishes with varying environmental histories (Campana
1999; Wells et al. 2003; Olley et al. 2011). The water in
which fish reside provides the majority of Ca which
comprises the CaCO3z makeup of bony structures such
as otoliths. It is through the process of branchial uptake
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Table 3 Variable importance (/) values describing the mean decrease in classification accuracy when a particular element was permuted

across all trees of the random forest classifications built for each species

Variable importance (/)

Element Coho salmon Mottled sculpin Slimy sculpin Steelhead
Mg 28.1 (4) 18.1 (4) 8.4 (6) 37.0 (3)
Mn 438 (3) 30.2 (3) 37.1(3) 31.8(4)
Cu 8.0 (7) 9.4 (7) 124 (4) 10.8 (5)
Zn 12.9 (6) 14.1 (5) 8.0 (7) 1.2(7)
Sr 68.6 (1) 75.3 (1) 59.1 (1) 63.9 (1)
Ba 555Q2) 55.1(2) 413 (2) 464 (2)
Pb 152 (5) 10.1 (6) 85(5) 4.4 (6)

Higher values denote higher variable importance. Numbers in parentheses are / value ranks for each species

that inorganic trace elements are also primarily taken up
into the blood plasma (Farrell and Campana 1996).
Ratios of inorganic trace elements to Ca in water are
positively correlated with concentrations of trace ele-
ments in the otolith, and lower Ca concentrations in the
water result in a greater proportion of the trace elements
being absorbed by the gills (Campana 1999).
Physiological barriers also influence the pathway of
inorganic elements from water to otolith, affecting the
degree to which variability in (element:Ca)yaqe, 1S
reflected in otolith microchemistries among fish of vary-
ing environmental histories and among different species
(Campana 1999; Hamer and Jenkins 2007; Sturrock
et al. 2014). Physiologically non-essential trace ele-
ments Sr and Ba are predominantly (>98%) incorporat-
ed into the mineral components of otoliths through
cation substitution for Ca (Izzo et al. 2016). In contrast,
>27% of physiologically essential Mn, Cu, and Zn in
otoliths is incorporated into the protein component
(Doubleday et al. 2014; Izzo et al. 2016). These physi-
ologically essential elements are restricted in the degree
to which they can exhibit environmental differences
because their concentrations in the blood plasma are
highly regulated and poorly correlated with ambient
conditions (Campana 1999; Sturrock et al. 2014). Thus,
physiological barriers likely contributed to the interspe-
cific otolith microchemistry differences that we found
for Sr and Ba, and could have limited our ability to
detect otolith microchemical differences in Mn, Cu,
and Zn between sites, even if ambient concentrations
of these elements exhibited environmental variability.
Campana (1999) suggests that the wide range of otolith
trace elemental concentrations observed across habitats,

species, and studies may also be related to differences in
the relative rates of protein synthesis and otolith crystalli-
zation. Such a phenomenon may be contributing to our
finding of distinct relationships between otolith Sr concen-
trations of juvenile steelhead and each of the sculpin
species (Fig. 2). This finding was somewhat unexpected
for many reasons. First, mottled and slimy sculpin are
closely-related sister species (Yokoyama and Goto 2005)
that are capable of hybridization (Strauss 1986). Further-
more, the two species exhibited similar sizes at age and
occupy presumably similar ecological niches, suggesting
that the two species exhibit differences in the physiological
pathway regulating trace element uptake. While we did not
perform otolith morphometry analyses, visual differences
between mottled and slimy sculpins otoliths shapes were
readily observable and may be indicative of different oto-
lith crystallization rates between species. Because some
sites within our study area contained both mottled and
slimy sculpins, future research could investigate the role
of crystallization rates on interspecific differences in otolith
trace elemental concentrations. We note that the sculpin
samples included in our study were identified to species in
the lab prior to otolith excision by counting the number of
pelvic fin rays following Hubbs et al. (2004); sculpin with
three rays per fin were identified as slimy sculpin and those
with four rays were identified as mottled sculpin. The high
correlations and diverging relationships between each scul-
pin species and juvenile steelhead confirms our distinction
of the two species based on pelvic fin ray counts, and
underscores the importance of accurate species identifica-
tion for otolith microchemistry provenance studies.

Our investigation into the interspecific relationships
between juvenile steelhead, coho salmon, and resident
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Fig. 3 Box and whisker plots describing the distributions of the
median otolith Mn, Sr, and Ba concentrations among all individual
age-0 coho salmon (left) and age-0 steelhead (right). Boxes en-
compass the 25 to 75 percentiles and whiskers extend to the 2.5

sculpin species was conducted supplementary to a larg-
er, ongoing assessment of juvenile steelhead otolith
microchemistries among more than 30 sites within the
Lake Michigan basin. Because the aim of that larger
project is ultimately to build a database of juvenile
steelhead otolith microchemistries in order to classify
unknown-origin adult steelhead, sample sites targeted
regions of high juvenile steelhead densities. This led to
an uneven spatial distribution of sites with respect to

@ Springer

and 97.5 percentiles. Filled circles depict the mean of the distribu-
tion. The dashed vertical lines separate sites among the Northwest-
ern (NW), Northeastern (NE), and Southeastern (SE) Lake Mich-
igan hydrologic unit code 6 (HUC6) basins

watersheds and hydrologic units. A more experimental
sampling strategy in which multiple sites were sampled
within a set number of watersheds for each hydrologic
unit would have allowed us to better assess classification
performance at these coarser resolutions. We were lim-
ited in our site selection for this study to those for which
we had juvenile steelhead samples already in hand and
at which the presence of sculpin and coho salmon had
been previously recorded. Nonetheless, our sampling
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Fig. 4 Box and whisker plots describing the distributions of the
median otolith Mn, Sr, and Ba concentrations among all individual
mottled sculpin (left) and slimy sculpin (right). Boxes encompass
the 25 to 75 percentiles and whiskers extend to the 2.5 and 97.5

encompassed a broad geographic area within the Lake
Michigan basin (Fig. 1), and the otolith trace elemental
concentrations we measured encompassed similar
ranges of values to those found among yellow perch
from nearshore wetlands throughout lakes Huron and
Michigan (Schoen et al. 2016) and Chinook salmon
from natal sources within the Lake Huron basin
(Marklevitz et al. 2011). As such, we feel that our
sampling coverage was sufficient to investigate the

percentiles. Filled circles depict the mean of the distribution. The
dashed vertical lines separate sites among the Northwestern (NW),
Northeastern (NE), and Southeastern (SE) Lake Michigan hydro-
logic units (U.S. Geological Survey hydrologic unit code 6)

hypothesis that otolith microchemistries of juvenile co-
ho salmon and river-resident sculpin species are predic-
tive of those of juvenile steelhead sampled among natal
sources within the Lake Michigan basin.

Overall, understanding variation in recruitment
among individual stocks, and the effects of harvest
and management approaches on these dynamics, is
critical to effective and efficient use of management
resources (Houde 2008; Molton et al. 2012; Ludsin
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Table 4 The proportions of steelhead natal sources assigned correctly at three spatial resolutions. Site IDs and sample sizes (1)

corresponding to the proportions reported are in Table 1

Proportion steelhead assigned correctly

Sample origin Steelhead model

Mottled sculpin model Slimy sculpin model

Coho salmon model

Unit Watershed SiteID n Site Watershed Unit Site Watershed Unit Site Watershed Unit Site Watershed Unit
NWLM Fischer Cr A 10 0.90 0.90 0.90 0.20 0.20 0.20
NELM Black R B 20 1 1 1 0.80 0.80 1
Boardman R C 21 0.90 0.90 1 0.71 0.71 1 0.95 0.95 1
Betsie R D 10 0.50 0.50 1 0.60 0.60 0.90 0 0 1
Manistee R E 20 0.65 0.70 1 0.20 0.20 0.95 0.20 0.20 1
F 22 0.86 0.86 1 041 041 1 0.09 0.09 1
Little Manistee R G 10 0.20 0.30 0.70 0.30 0.60 0.80 0 0 0.90
H 20 0.85 0.85 1 0.80 0.80 0.85 0.60 0.60 1
1 21 0.90 0.95 1 095 0.95 1
Pere Marquette R J 20 0.55 0.60 0.60 0.75 0.75 0.80 0.35 0.35 1
K 20 0.55 0.65 0.95 0.65 0.80 1 0 0.40 1
L 20 0.37 047 1 047 0.68 1 0.58 0.74 1
Muskegon R M 19 0.74 0.74 0.95 0.60 0.60 0.95
SELM  Grand R N 13 0.31 0.31 0.38 0.38 0.38 0.38
Kalamazoo R (0] 21 0.67 0.67 0.67 0.38 0.38 0.38
St. Joseph R P 20 0.85 0.85 0.85 1 1 1 0.75 0.75 0.75
Overall 0.70 0.73 0.89 0.55 0.57 0.75 0.67 0.72 1 0.39 045 0.97

Hydrologic units are defined at the U.S. Geological Survey hydrologic unit code 6 level. NWLM = Northwestern Lake Michigan, NELM =
Northeastern Lake Michigan, and SELM = Southeastern Lake Michigan

et al. 2014). When the structure of mixed-stock fisher-
ies and populations is unknown, researchers and man-
agers seeking to understand controlling mechanisms
may waste a considerable amount of effort in investi-
gating environmental (e.g., temperature, physical pro-
cesses, predators, and prey) or population demographic
variables (e.g., spawning stock biomass, age structure,
recruitment) at appropriate spatial resolutions (Myers
et al. 1997; Houde 2008). In reality, recruitment to
mixed-stock fisheries is more likely regulated by dis-
parate, region-specific mechanisms, with parameters
governing recruitment at the stock level potentially
uncorrelated with dynamics of the whole mixed-stock
fishery (Einum and Nislow 2005; DuFour et al. 2015).
Our finding that the elements most correlated between
species were also the most informative for classifica-
tion suggests that increased understanding of interspe-
cific otolith microchemistry relationships may prove
useful for streamlining future collections and data ac-
quisition to inform fisheries research and management.
Assignment accuracies to site and watershed decreased

@ Springer

by 2-30% and 1-28%, respectively, when otolith
microchemistries of juvenile steelhead were trans-
formed to those of mottled sculpin, slimy sculpin,
and coho salmon; however, miss-assigned fish often
classified into nearby watersheds within the larger hy-
drologic unit, leading to relatively high assignment
accuracies (75-100%) at the coarsest geographical res-
olution (Table 4). This is especially promising because
there likely exist many other large systems for which
otolith microchemistry on multiple species has been
collected, and for which the determination of interspe-
cific chemical relationships could bolster origin assign-
ments. For example, otolith microchemistry data sets
for multiple species across numerous natal sources now
exist for the Lake Erie basin: steelhead (Boehler et al.
2012), walleye Sander vitreus (Bigrigg 2008), yellow
perch (Pangle et al. 2010; Reichert et al. 2010), and
white bass Morone chrysops (Davis 2013). We believe
there are increased opportunities, efficiencies, and cost
savings to be realized by further exploring otolith
microchemistry relationships among species.
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