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PROJECT ABSTRACT 

Grant #: 2011.1198 

 

Title:  Exploring Life History Characteristics of Naturalized Versus Stocked Chinook 

 

Abstract body: 

Purpose: 

Naturalization of stocked populations can result in divergence of life-history traits from 

domestic stocks.  Lake Michigan supports popular Chinook (Oncorhynchus tshawytscha) 

Salmon fisheries that have been sustained by stocking since the late 1960s.  Natural 

recruitment of Chinook Salmon in Lake Michigan has increased in the last few decades 

and currently contributes over 50% of Chinook Salmon recruits.  Samples collected as 

part of a lakewide mass-marking of Lake Michigan Chinook Salmon, starting with the 

2006 year class, indicated hatchery fish average 30-mm longer and 130 grams heavier 

than naturalized fish at age-1.  We hypothesized that selective forces differ for 

naturalized and hatchery populations resulting in divergent life-history characteristics 

with implications for Chinook Salmon population production and the Lake Michigan 

fishery.  Specific life-history metrics of interest include: age- and size- at maturity, 

spawning run timing, fecundity, and sex ratio.      

Objectives: 

We evaluated life history characteristics between naturally recruited and stocked 

Chinook Salmon in Lake Michigan to help discern potential changes resulting from 

naturalization and implications for fisheries. 

A. Conduct an analysis of historical data to determine if life-history parameters changed 

through time as the Chinook Salmon population became increasingly naturalized. 

B. Conduct a two-year field study of naturalized and hatchery stocked Chinook Salmon 

spawning populations to quantify differences in life-history metrics of adults. 

C. Determine if reproductive potential differs between naturalized and hatchery stocked 

Chinook salmon by measuring egg thiamine levels.   

 

 



Methods: 

A. We evaluated 23 years of biological data collected by the Michigan Department of 

Natural Resources (MDNR) to determine if average life-history parameters changed 

through time.  Specific metrics included: age-at-maturity, size-at-maturity, and sex ratio.  

We also evaluated the relationship between adult female weight (i.e., an index of 

fecundity) and potential environmental influences that included prey biomass estimates 

and historic stocking densities.  Statistical tests relied upon general linear models 

including analysis of variance and, in some cases, analysis of covariance to test for 

significant interaction terms. 

B. We collected biological samples from adult Chinook Salmon spawning populations 

during two years (2012 and 2013).  Study sites were selected to target a hatchery-

stocked spawning population (at Medusa Creek), a naturalized spawning population (at 

the Betsie River), and a spawning population comprised of naturalized and hatchery-

stocked adults, whose origins could not be discerned (at the Little Manistee River) in 

northwest Michigan.  Samples were collected during creel surveys and at MDNR weirs.  

Creel survey sampling periods were two weeks and the entire survey period began in 

early fall and continued through October.  We evaluated age- and size-at-maturity, 

aspects of reproductive investment (i.e., fecundity and egg size), and spawning run 

timing.  Size at maturity was measured from harvested fish measured during the creel 

survey or fish harvested at MDNR weirs.  Age was estimated using scale samples from 

harvested fish and in the second year we also collected fin rays to estimate ages, as they 

have been reported to be more accurate for Chinook salmon in Idaho rivers.  Fecundity 

was measured from sampling ovaries of females harvested in the fishery and weirs.  

Fecundity was estimated by enumerating eggs in a subsample of the ovary and 

extrapolating to total ovary weight.  Egg diameter and egg weights were measured from 

scanned images of egg samples using digital imaging software.  Statistical tests relied 

upon general linear models including analysis of variance and, in some cases, analysis of 

covariance to test for significant interaction terms. 

C. We submitted Chinook egg subsamples for laboratory analysis of total thiamine 

concentration to determine if egg and larvae survivability may differ between 

naturalized, hatchery-stocked, and a mixed spawning population.  Samples were 

submitted for the naturalized and mixed populations in 2012, and all three population 

types in 2013.  In response to a request from MDNR biologists, we also submitted Coho 

salmon eggs for total thiamine analysis in 2013.  We tested for significant differences in 

total egg thiamine concentrations among populations using analysis of variance. 

 



Results: 

A. We found weak evidence of changes in life-history demographics through time and that 

environmental effects may be more influential than population-specific characteristics.  

Maturity at age did not change, size-at-maturity varied through time with a weak 

declining trend in weight through time (Figure 1) but a trend was not detected for adult 

total length though time. We did identify a decrease in the male:female ratio through 

time (Figure 2).  Mean annual weights of adult females exhibited an asymptotic 

relationship with prey biomass (Figure 3) and a positive linear relationship with annual 

Chinook Salmon stocking rates. 

B. Angler effort peaked at similar times in both the naturalized and hatchery-stocked 

fisheries and diminished at the end of October, which indicated that the spawning runs 

occurred about the same time regardless of origin (Figure 4).  Age- and size- at maturity 

revealed no differences among spawning populations.  We also found no differences in 

mean fecundity between spawning populations, however we did find that the largest 

and heaviest eggs were from the mixed population, smallest from the naturalized 

population, and intermediate sized from the hatchery-stocked population (Figure 5).   

C. Egg thiamine concentrations differed between naturalized and mixed population 

females in 2012 (Table 1).  In 2013, we again found those differences, but results from 

hatchery-stocked fish indicated they did not differ from either naturalized or the mixed 

population (Table 1).  On average, Chinook salmon egg thiamine concentrations were 

above the ED50 (concentrations below the ED50 are associated with 50% larval 

mortality).  Coho salmon samples from the Platte River were, on average, below the 

ED50 and significantly lower than Chinook salmon levels.          

Conclusions: 

In general, our results did not indicate significant life-history divergence between 

naturalized and hatchery-stocked Chinook salmon populations in Lake Michigan.  We 

found weak evidence of changes in spawner demographics in a historical analysis 

(objective A) and few significant differences from a field study that sampled naturalized, 

mixed, and hatchery-stocked populations (objective B).  We did find significant 

differences in egg thiamine concentrations between mixed and naturalized Chinook 

salmon spawning populations, but the hatchery-stocked population did not differ from 

the other types (objective C).  

In contrast to salmon hatchery supplementation programs in the Pacific northwest, 

where divergence between hatchery and natural populations is commonly a concern 

from a conservation genetics perspective, divergence in the Great Lakes is principally a 

concern relative to angler satisfaction and fishery sustainability. Mature Chinook Salmon 



in Lake Michigan did not show strong differences in life-history traits between hatchery 

and naturalized fish. Run timing, trends in angler effort, timing of maturation (i.e., age 

or length), and fecundity were similar between hatchery and naturalized spawning runs, 

however small differences were observed in egg size metrics. 

Egg thiamine concentrations in Lake Michigan Chinook Salmon were above the ED50 

threshold (concentrations below the ED50 are associated with 50% larval mortality), but 

those for Coho Salmon were below the ED50 level. Comparatively, egg thiamine 

concentrations in the Chinook Salmon we examined were higher, on average, than 

those previously reported for several Great Lakes including Lake Michigan and did not 

indicate high occurrence of thiamine deficiency. The increase for Chinook Salmon is 

specifically noteworthy, and somewhat unexpected, given Lake Michigan’s Chinook 

Salmon now have increased consumption of Alewives, which are the primary source of 

thiamine deficiency in Great Lakes salmonids.  Future research will be required to 

determine what mechanism could be underlying increased egg thiamine levels in 

Chinook salmon, but our data suggested that effects of early mortality syndrome on 

recruitment may be less severe now than in recent history.   

The future demographics of Lake Michigan’s Chinook Salmon spawning population 

cannot be fully discerned from our analyses and field study, but for now there appears 

to be relative stability with environmental variability. Stability through time supports the 

hypothesis that there is not large genetic divergence among populations.  A recent 

genetics evaluation reported that Lake Michigan Chinook Salmon are a single, panmictic 

population based on samples from 18 spawning sub-populations. However, a lack of 

detectable genetic divergence among spawning sub-populations does not rule out the 

potential for divergent phenotypic expression in life-history traits between hatchery and 

naturalized fish. Currently, the natural resource agencies working within the Lake 

Michigan Technical Committee coordinate the tagging of all Chinook salmon stocked 

into Lake Michigan with microwire tags. As the tagged hatchery and untagged 

naturalized fish are recovered from fisheries and weir harvests, further comparisons of 

life-history characteristics between hatchery and naturalized Chinook Salmon will 

become achievable. 

 

 

 

 



 

 

Figure 1. Mean weight (top) and total length (bottom) at maturity of Lake Michigan 

Chinook Salmon collected from Michigan Department of Natural Resources weirs during 

the fall migration. Fish collected from the weirs were a mixture of naturalized and 

hatchery produced fish. Female are represented by open diamonds and a dashed line. 

Males are depicted with solid diamonds and a solid line. Data are for all age classes 

harvested from 1991 through 2012. 

 



 

Figure 2. Ratios of male to female Lake Michigan Chinook Salmon harvested during the 

fall migration from Michigan Department of Natural Resources weirs through time. Fish 

collected from the weirs were a mixture of naturalized and hatchery produced fish. Data 

are for all age classes harvested from 1991 through 2013. 

 

  



 

Figure 3. Relationship between mean female weight of Chinook Salmon harvested from 

weirs to prey biomass. Chinook Salmon harvest data were collected from weirs between 

1991 and 2013. Prey biomass estimates were from USGS trawl data collected from 1991 

through 2013, excluding 1998.  

 

 

 

 

 

 

 

 

 



 

Figure 4. Average (+SD) angler count per survey and catch success of Chinook Salmon 

during the fall 2012 (grey) and 2013 (black) sampling seasons. The naturalized 

population (circles, top row) data presented in is from the Homestead Dam location on 

the Betsie River. The stocked population (triangles, bottom row) data presented was 

collected from Medusa Creek. The scale of the y-axis differs between the top and 

bottom row to allow temporal comparisons to be made between populations (12=2012, 

13=2013).  

 

 

 

 

 

 



 

Figure 5. Egg size (i.e., weight and diameter) to female weight relationship of Chinook 

Salmon collected during the fall migration from naturalized, hatchery-stocked, and 

mixed (partially naturalize and hatchery-stocked) populations of fish occurring within 

Lake Michigan. Samples were collected from Michigan Department of Natural Resources 

weirs and a roving-access creel survey. Lines depict the linear relationship of the 

naturalized (dashed), hatchery-stocked (dotted), and mixed (solid) mixed population of 

salmon. 

 

 

 

 

 

 

 



 

Table 1. Sample size (n), mean concentrations (nmol/g), and standard deviations (SD) of 

total thiamine in the eggs of Chinook and Coho Salmon from naturalized, mixed, and 

hatchery-stocked populations in Lake Michigan. 2012 and 2013 data were analyzed 

separately due to imbalance in samples sizes; an outlier of 21.9 nmol/g from the 2012 

naturalized population was removed. Mean values not followed by a common 

superscript significantly differ (p < 0.05).  

 

 

 

  

Species Population n Mean SD n Mean SD

Chinook Naturalized 11 5.25
a

1.4 27 4.20
a

1.1

Mixed 10 3.99
b

0.9 20 3.40
b

0.8

Hatchery-stocked - - - 24 3.87
ab

1.5

Coho Hatchery-stocked - - - 32 2.27
c

0.6

2012 2013
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Background/Overview 

1. Briefly summarize the project description as outlined in the original proposal. 

 

Naturalization of stocked populations can result in divergence of life-history traits from 

those exhibited by domestic stocks.  Divergence between naturalized (i.e., feral) and 

hatchery fish may be exacerbated if traits are heritable and either 1) naturalized 

populations are reproductively isolated from hatchery populations or 2) hatchery 

practices invoke differing selection factors than those experienced by naturalized fish.  

Although separating genetic and environmental effects on phenotypic trait expression is 

challenging, many fish life history traits have been experimentally shown to be heritable 

(e.g., Conover et al. 2005).  Divergences in heritable traits via selection processes have 

implications for both population sustainability and fishery performance.  For example, 

critical population production parameters (e.g., reproductive characteristics, Einum and 

Flemming 1999) and fishery parameters (vulnerability to angling, Philipp et al. 2009 ) are 

heritable in some species, and thus, divergence can result in a changes in fitness and 

fishery contributions between naturalized and stocked populations (Araki et al. 2008).  

Concerns for divergence between wild and hatchery fish have been especially noted for 

Pacific northwest salmonines due to high heritability in life-history traits and extensive 

stocking. 

 

mailto:mwrogers@usgs.gov


Pacific salmonine introductions into the Laurentian Great Lakes increased in the late 

1960s when managers sought a way to reduce ecological effects of invasive Alewives 

Alosa pseudoharengus (Krueger et al. 1995) and develop valuable fisheries (Tanner and 

Tody 2002). Lake Michigan supports popular Chinook Salmon Oncorhynchus 

tshawytscha fisheries that have been sustained by stocking (Claramunt et al. 2013). The 

Michigan Department of Natural Resources (MDNR) annually collects data focused on 

open‐lake fishery creel surveys at Michigan ports, returning fish to hatchery imprint 

ponds (e.g., Medusa Creek), and Chinook Salmon returns to MDNR weirs. Evaluations to 

date have focused on percent contribution of naturalized fish to the population, 

collection of scales for estimating ages, and length and weight data. From this 

information, biologists have been able to determine that natural recruitment of Chinook 

Salmon in Lake Michigan has increased in the last few decades and currently contributes 

over 50% of Chinook Salmon recruits (Claramunt et al. 2008; Jonas et al. 2008; 

Claramunt et al. 2013). Tagged fish have also allowed for initial evaluations between 

hatchery and naturalized fish. For example, Williams (2012) reported that hatchery fish 

were, on average, 30 mm longer and 130 g heavier at age-1 than naturalized fish. The 

increasing contribution of naturalized Chinook Salmon to the Lake Michigan population 

has raised concerns whether potential life-history differences could have implications 

for fisheries management and harvests.  For example, if naturalized Chinook Salmon 

were found to have spawning runs later than stocked fish, then these fish may be less 

vulnerable to angler harvest as the weather worsens in late autumn. 

We sought to evaluate life history characteristics between naturalized and stocked 

Chinook Salmon in Lake Michigan to help discern potential changes resulting from 

naturalization and implications for fisheries. Specific life‐history metrics of interest 

included: age‐ and size‐ at maturity, aspects of female reproductive investment (i.e., 

female weight, fecundity, egg size), and spawning run timing. We also evaluated the 

implications of spawning run timing on angler effort and catches.  Our project used 23 

years of historical data collected from multiple MDNR sampling locations (Figure 1) and 

a two-year field project in northwest Michigan (Figure 2) for biological data collection to 

support these investigations.  We also evaluated potential differences in population 

reproductive potential by measuring total egg thiamine concentrations. 

Pacific salmon fisheries in the Great Lakes are estimated to have a multi-billion dollar 

economic impact (Tanner and Tody 2002). Fish Community Objectives set for Lake 

Michigan that were developed to address A Joint Strategic Plan for Management of 

Great Lake Fisheries (GLFC 2007) recognizes the prominent role Pacific Salmon have 

played and will play in the future. By exploring population-specific characteristics, we 

can develop expectations as shifts from a hatchery supported to a naturalized, self-



sustaining Chinook Salmon population occur in Lake Michigan and what these potential 

changes mean to fisheries management strategies.  

  



 

 
Figure 1. Map of rivers and creeks where Chinook Salmon samples were collected for 

historical analyses. 

 

 
Figure 2. Map of field study areas and creel survey locations for Lake Michigan salmon 

life history conducted during the fall of 2012 and 2013. Stars in smaller inset map 

indicate approximate locations of areas 1 (Medusa Creek, a hatchery population) and 2 

(Betsie River, a naturalized population; and Little Manistee River, a mixed population). 



2. Briefly summarize any significant changes to the work performed in comparison to the 

plan of work originally proposed and funded.  If changes were made, describe how they 

affected your ability to achieve the intended outcomes for the work. 

 

We had to adapt our field study due to an unexpected fishery closure at the Betsie River 

mouth sampling site.  Due to extremely low water levels in 2012 that resulted in 

minimal fish passage, the Michigan Department of Natural Resources imposed a fishery 

closure that went into effect during our sampling season and will remain in-place for 

five years (Figure 2).  The fishery remained open further up-stream, and thus, we were 

able to continue collecting biological samples and angler effort data from this 

naturalized spawning population.  However, we expect the magnitude of creel survey 

metrics (e.g., angler counts) increased due to the increasing concentration of anglers. 

 

In January 2013, we gave a project briefing at the Lake Michigan Technical Committee 

meeting where we were asked if egg thiamine comparisons among spawning population 

types was a component of our study.  It was not in the original proposal, but we felt this 

information would be of value to the management community and added a third 

objective (objective C above).  This added objective addressed the question of “do 

naturalized fish have higher egg thiamine levels?” which could facilitate reproduction 

and self-sustainability.  We feel this addition made a beneficial contribution to our 

study, will be of interest to fisheries managers, and will result in a peer-reviewed 

publication. 

 

 

 

 

Figure 2.  Low 

water levels at 

the Betsie River’s 

mouth resulted in 

a highly braided 

river with minimal 

fish passage.  The 

MDNR ordered a 

fishery closure. 



Outcomes 

3. To what extent and how (if at all) did this research project advance scientific 

knowledge of the issue? 

 

Given the desire of the Lake Michigan fisheries management community to attain self-

sustaining stocks that support sustainable harvests (Eshenroder et al. 1995), an implicit 

objective is that naturalized salmonine populations will exhibit life-history 

characteristics that are just as amenable to fisheries harvest as hatchery populations.  

Our study was the first to evaluate multiple life-history hypotheses regarding Lake 

Michigan’s naturalized and hatchery stocked Chinook Salmon population as well as 

conduct a field study to directly test some of these assumptions.   

 

We hypothesized that multiple life-history parameters would differ between naturalized 

and hatchery stocked fish based on literature from the Pacific northwest and discussions 

with Lake Michigan fisheries biologists.  For example, we hypothesized that hatchery 

fish would return to spawn at younger ages and there would be an increasing frequency 

of jacks (i.e., males in spawning condition at ages 1 or 2) relative to naturalized 

spawning populations.  An increased number of jacks could have multiple fishery 

implications such as lower average weights of angler harvested fish from hatchery 

spawning populations.  We also hypothesized that naturalized populations would have 

spawning runs that occurred later in the year, which could make them less accessible to 

anglers due to weather conditions in late fall.  

 

Our evaluation of adult size, timing of spawning runs, and fecundity revealed that there 

were few detectable differences between naturalized and hatchery-stocked fish at this 

time.  Timing of spawning runs, and associated angler effort, were similar among 

spawning population types and did not support the concern than spawning timing was 

later for naturalized fish.  Size and weight metrics also did not support the concern that 

angler harvested fish would likely be smaller in hatchery supported spawning 

populations.  In general, our results did not support that life-history characteristics of 

naturalized fish would have large influences on fisheries dynamics.  Important to note 

though that our study was limited to Lake Michigan tributaries primarily in 

northwestern Michigan.  Thus, our sampling does not incorporate the potential 

variability among tributaries distributed around the lake.  

 

By examining historic Chinook Salmon weir harvest data coupled with our field study at 

Lake Michigan tributaries, we provided base-line spawner life-history demographics that 

can help inform population trends as they become naturalized.  The future 



demographics of Lake Michigan’s Chinook Salmon spawning population cannot be fully 

discerned from our retrospective analysis and field study, but for now there appears to 

be relative stability and comparability that are shaped by environmental variability (e.g., 

forage fish biomass).  Our work also highlights one of the values of the mass marking 

program by allowing for distinction of hatchery versus naturalized Chinook salmon and 

how the program can facilitate stock-specific investigations. 

 

4. To what extent and how (if at all) did this project contribute to the education and 

advancement of graduate or undergraduate students focused on Great Lakes fishery 

issues? 

This project contributed to the career of Janice Kerns, a Ph.D. student during the study, 

who largely led the field data collection, data analysis, and much of the report writing.  

This project provided an opportunity to improve her leadership skills and roles in project 

management, which will be essential to her career.  Janice had previously mostly 

worked on large rivers and temperate inland lakes, and thus, working on Lake Michigan 

greatly contributed to her diversity and gave her a larger appreciation of our valuable 

Great Lakes fisheries.  The project is expected to result in three peer-reviewed 

publications and Janice will likely be lead author on several. 

5. To what extent and how (if at all) did this work help you or others on your team build 

new relationships with others in the research or management communities? 

 

This project resulted in a stronger relationship between U.S. Geological Survey (Great 

Lakes Science Center) and the Michigan Department of Natural Resources (Charlevoix 

Fisheries Research Station) and the Illinois-Indiana Sea Grant.  For several parties on the 

project, it was their first time working with each other on a research project.  By 

reaching out to Chinook salmon research biologists with Idaho Fish and Game for 

Chinook age estimation methods, we were able to introduce them to the importance of 

Pacific salmon fisheries in the Great Lakes.  This project resulted in working together on 

project design, sampling at weirs, and assigning age estimates of fish with multiple 

MDNR biologists that are now new colleagues.  

 

6.  To what extent and how (if at all) do the findings have action implications for fishery 

managers? 

 

The few significant differences we found indicate that hatchery selection processes 

likely have not induced directional selection that would facilitate divergences between 

hatchery-stocked and naturalized Chinook salmon.  If results had been strongly 



contrasting, as has occurred in the Pacific Northwest, then considerations for improved 

brood stock selection or genetics management may have been encouraged.  Outcomes 

of our research will be shared with the Lake Michigan fisheries managers at an 

upcoming Lake Michigan Technical Committee Meeting and action implications could be 

forthcoming. 

 

7. Considering the above or other factors not listed, what do you consider to be the most 

important benefits or outcomes of the project? 

 

We were able to empirically and experimentally address a management concern 

previously expressed by Lake Michigan management agencies related to potential 

effects of increased naturalization on Chinook salmon fisheries.  Although somewhat 

limited in scope (e.g., spawning populations, geographically, tributaries only) we were 

able to test several hypotheses related to demographics of spawning populations that 

support important seasonal fisheries.  

Related Efforts 

8. Was this project a standalone effort, or was there a broader effort beyond the part 

funded by the GLFT?  Have other funders been involved, either during the time of your 

GLFT grant or subsequently? 

 

This project was a standalone effort with no additional funding sources. 

 

9. Has there been any spin-off work or follow-up work related to this project?  Did this 

work inspire subsequent, related research involving you or others? 

 

As described above, we added a third objective during the duration of this project (i.e., 

egg thiamine concentration analysis).  By identifying some differences among species 

and spawning population types and then comparing to historical published values, it is 

plausible that more regular monitoring of Pacific salmon egg thiamine concentrations 

may be desired. 

Communication/Publication of Findings 

10.  List publications, presentations, websites, and other forms of formal dissemination of 

the project deliverables, tools, or results, including those that are planned or in 

process. 

 



We expect three publications from this project to be submitted to peer-reviewed 

journals within the next year: 

 

Trends in Adult Spawner Characteristics as Lake Michigan’s Stocked Chinook Salmon 

Became Increasingly Naturalized 

 

Comparison of Life-History Characteristics Between Naturalized and Stocked Chinook 

Salmon in Lake Michigan 

 

Egg Thiamine Status and Population Comparisons of Lake Michigan Pacific Salmon 

 

11. Please, characterize your efforts to share the findings of the research with state, 

federal, Tribal, and interjurisdictional (e.g., Great Lakes Fishery Commission) agencies 

charged with management responsibilities for the Great Lakes fishery. 

 

We have provided two briefings at Lake Michigan Technical Committee meetings, a 

committee of the Great Lakes Fishery Commission, with representatives from all 

management agencies that oversee Lake Michigan fishery resources.  We will make 

publications and final report materials available to that group. 

 

12. Please identify technical reports and materials attached to this report by name and 

indicate whether you are requesting that GLFT restrict access to the materials while 

you seek publication. 

 

There are no technical reports or other materials for which we request restricted access. 

 

13. Manuscripts.  Grantees submitting one or more publications or pending publications 

in lieu of a stand alone technical report must submit a cover memo that confirms that 

all aspects of the funded research are incorporated in the published work, and in cases 

of multiple publications, identifies or crosswalks the grant-funded objectives to the 

published article containing results. 

 

All aspects of this research will be incorporated into the publications that are in 

preparation. 

 

 

 



Discussion 

Despite advances in hatchery technology and practices to minimize differences between 

hatchery and wild fish, hatcheries cannot produce fish identical to wild born fish 

(Knudsen et al. 2006). Salmonids have been among the most studied species for 

comparing life-history differences between hatchery stocked and wild-borne fish. Life-

history traits that have been found to differ between hatchery and wild individuals 

include relative fitness, maturation timing, timing of spawning, fecundity, and growth 

rates (Olson et al. 1995; Jonsson et al. 1996; Hoffnagle et al. 2008; Williamson et al. 

2010; Williams 2012). All of these factors have implications for population production 

and population sustainability.  

In our retrospective analyses, stable age at maturity argued against significant hatchery 

induced genetic or phenotypic changes. Age-at-maturity has been reported as a 

heritable trait in Chinook Salmon (Hankin et al. 1993; Kinnison et al. 2011) and a trend 

through time could result from non-random brood stock selection. In contrast, hatchery 

innovations (e.g., improved feed quality) could induce faster growth through time and 

facilitate earlier maturation that could be propagated because size-at-age is a heritable 

trait (Kinnison et al. 2011). Johnson and Friesen (2013) also reported no changes in 

hatchery Chinook Salmon age-at-maturity using 17 years of data from the Pacific 

Northwest.  

We observed a declining trend in adult weight through time.  This decline occurred 

during a time of declining prey fish biomass, however there are other factors that could 

contribute to declining weight at maturity for female and male Chinook Salmon. Within 

Lake Michigan, declines in prey energy density could be exacerbated by declines in 

overall prey fish biomass and could also underlie decreased size-at-maturity. After 

dreissenid mussels invaded Lake Michigan, Madenjian et al. (2006) reported 23% lower 

energy density in adult Alewives. Madenjian et al. (2006) used bioenergetics models to 

estimate that lower prey energy density would necessitate a 22.1% increase in Alewife 

consumption, relative to pre-invasion consumption rates, to weigh 8 kg at age 4, and 

this may not have been possible given declines in Alewife biomass. Furthermore, 

numerous size trend studies have been conducted within the salmon fisheries of the 

Pacific Northwest and have associated the declines with trends in ocean currents, 

evolutionary trends driven by selective fisheries, changes in growing conditions, broad-

scale environmental conditions, and density-dependent competition (e.g., Bigler et al. 

1996; Kendall and Quinn 2011; Johnson and Friesen 2013). Thus, any potential 

divergence due to hatchery selection processes or alternative life-history strategies 

could be masked by environmental changes.  



Our hypothesis that a more balanced sex ratio would occur as naturalized fish 

increasingly contributed to the spawning population was supported, although it may not 

have occurred by the mechanism we expected. Knudsen et al. (2006) described how an 

imbalanced sex ratio could result from an increasing proportion of younger hatchery 

fish. In our study we found no trend in age at maturity which suggests the age at return 

of males or females may not be influencing the change in sex ratio. Another possible 

explanation could be the decline in mature female size that we observed between 1991 

and 2011. Holtby and Healey (1990) assessed 31 populations of Coho Salmon from 

California to Alaska and found changes in sex ratios to be directly related to 

female/male size ratios. For the Coho Salmon populations examined there were two 

types of populations, one where males out number females and females are larger at 

maturity, whereas in the other population type the sexes are equally abundant and 

equal in size at maturity (Holtby and Healey 1990).  However, Holtby and Healey (1990) 

concluded that foraging strategies and foraging success could impose sex-specific 

constraints on growth that could influence maturation and alter sex ratios.  Further 

research would be required to determine if an interaction between sex-specific foraging 

strategies during a time of declining prey biomass could have resulted in the decrease in 

male:female sex ratio for Lake Michigan Chinook Salmon.  

To explain the decline in size of females, we looked at how Chinook Salmon stocking 

rates and prey biomass influenced the size of mature female Chinook Salmon. The 

female size to prey biomass relationship was explained by an intuitive asymptotic 

relationship where increased prey biomass resulted in increased female weight until a 

saturation point was met. The stocking rate relationship on the other hand appeared 

less intuitive and contrary to expectations with a direct positive relationship with female 

size. Our expectation was that higher stocking rates would lead to higher Chinook 

Salmon densities and result in increased intra-specific competition. If there are 

unlimited resources, fish should remain at their largest attainable size. Tsehaye et al. 

(2014) also examined changes in the salmonine community of Lake Michigan and found 

that age-3 Chinook Salmon growth was inversely related to the stocking rate in the 

previous year. The difference between our study and Tsehaye et al. (2014) could be 

explained by the fact that they included data during initial stocking of salmon into Lake 

Michigan when weights of fish were at their highest, Alewife biomass was high, and 

Chinook Salmon densities were low. During this initial period, the weights of fish may 

have been independent of density-dependent interactions due to unlimited prey (i.e., 

Alewife abundance) availability compared to more recent times. An alternative 

explanation is that Lake Michigan fisheries management agencies adjust Chinook 

Salmon stocking rates based on growth and forage biomass estimates, and thus, 

stocking levels are higher when conditions for growth are higher. 



Our field experiment was designed to determine if life-histories differed between 

stocked and naturalized Chinook Salmon in Lake Michigan.  In contrast to salmon 

hatchery supplementation programs in the Pacific northwest where divergence 

between hatchery fish and natural populations is commonly a great concern from a 

conservation genetics perspective (e.g., Berejikian and Ford 2004; Ford et al. 2006), 

divergence in the Great Lakes is of concern relative to angler satisfaction and fishery 

sustainability. Mature Chinook Salmon in Lake Michigan did not show strong differences 

in life-history traits between hatchery released and naturalized fish. Run timing, trends 

in angler effort, timing of maturation (i.e., age or length), and fecundity were similar 

between hatchery and naturalized spawning runs, however small differences were 

observed in egg size. 

Creel surveys indicated no differences in run time of migrating fish. The results of this 

exploration revealed no clear seasonal trend differences in angler counts, however 

estimates of mean fish caught per angler or catch success estimates were difficult to 

interpret given unusual water level effects. In the first year of the study, low lake levels 

on Lake Michigan caused changes in the access and flow to the Betsie River. During this 

time, the water was so low the mouth of the river was largely inaccessible and hundreds 

of fish were stranded on mudflats before they had a chance to swim upstream. In 

response to the extremely low water and concern over their vulnerability to anglers, the 

MDNR closed the fishery at the mouth of the river half way through the first study 

season to allow fish access to the spawning grounds. We believe that this action caused 

an atypical change in catch success further up river where our data was collected. This 

trend can be compared to the second year of the study when catch success remained 

constant as the mouth of the river remained closed to angling throughout the entire 

second season. Given the disparity in the characteristics within the fishery between 

years, it is hard to decipher what type of trend would occur in a typical year. With the 

consistency in access to the fishery in the second year, we believe that the second year 

more closely resembles the catch success trend for a typical year when there are no 

access restrictions. If this is true, the resulting flat trend would be in opposition to our 

initial hypothesis: that hatchery origin fish should have earlier run times than those of 

naturalized origin.  

We also found little to no differences in life history characteristics between hatchery-

stocked, naturalized, and mixed spawning stocks of Chinook Salmon in Lake Michigan. 

Age, size, fecundity, and timing of seasonal return of mature fish were similar across all 

populations examined. Our results differ from findings by Williams (2012) who found 

age-1 hatchery Chinook Salmon to be significantly larger than their naturalized counter 

parts, but we only evaluated adults. For our study, we compared the size of mature 



returning fish and it is possible that any size advantage hatchery fish had as juveniles 

faded with maturity. The one area that we did find statistical difference occurred within 

the size of female eggs, but it is difficult to discern whether the magnitude of the 

difference is of biological significance given the differences in the intercepts between 

the largest (mixed) and smallest (naturalized) eggs was only 0.4mm and 0.5g. 

Theoretically, increased egg size should lead to increased survival and growth that could 

be carried through into adulthood (Einum and Fleming 1999). Although we did not 

evaluate differences in survival within this study, we found no differences in mean 

length between spawning stocks. This suggests that any biological advantage of large 

egg size may not be realized through the growth of fish into maturity. 

Age and size at maturity can vary within and among populations based on individual 

differences in metabolic rates, availability of food, and environmental conditions. Our 

data suggested that female Chinook Salmon mature at similar sizes no matter which 

population they came from within Lake Michigan. In a review paper, Jonsson and 

Jonsson (1993) describe that within a cohort faster growing individuals are constrained 

by food limitation sooner than their slowing growing counterparts. The primary diet 

item of Chinook Salmon in Lake Michigan are Alewives (Warner et al. 2008; Jacobs et al. 

2013), and their abundance declined dramatically between the early 1960s and early 

1980s (Madenjian et al. 2005), then remained at somewhat low levels through 2004. 

Since 2004, however, the Alewife population has, on average, been at even lower 

densities (Madenjian et al. 2014). Hence, we speculate that the faster growing Chinook 

Salmon within a cohort will lose their competitive size advantage after the first year or 

two of life given that they do not undergo another ontogenetic shift to an alternative 

feeding niche. Thus, when fish size is constrained by the feeding opportunities, the best 

option for fast growers will be to mature at the growth inflection. For Lake Michigan 

Chinook Salmon, female size has been shown to have an asymptotic relationship with 

prey availability (see above), therefore it is possible that once faster growing fish have 

reached this growth limit, they mature, and return to spawn. 

In contrast to previous studies, we found ages generated from fin rays and scales were 

not different. Copeland et al. (2007) reported that fin rays not only had superior 

precision but also were more accurate than scales (99% versus 82%, respectively) for 

Chinook Salmon in the Pacific coast. One reason for this disparity may be due to 

differences in environmental conditions experienced by each population. Copeland et al. 

(2007) considered only ages from the oceanic stage of the fish sampled and noted that 

the slight decrease in accuracy observed by Chilton and Bilton (1986) was due in part to 

estimating total ages which include the combined freshwater and ocean ages. Copeland 

et al. (2007) also concluded that salmon that experience extended freshwater phases, 



harsh weather, or long juvenile migrations have increased likelihood of growth checks or 

false annuli, thus making age estimation more challenging. Environmental variables 

experienced by the Chinook Salmon in Lake Michigan are far different than their Pacific 

relatives with shorter migration times and distinct weather extremes in the Great Lakes. 

These differences would lead to seasonal disparities in growth rates affecting how 

annuli are formed and therefore, affect the ease of age estimation. 

Egg thiamine concentrations in Lake Michigan Chinook Salmon were above the ED50 

threshold, but those for Coho Salmon were below the ED50 level. Coho Salmon egg 

thiamine concentrations were within the range of previously cited concentrations from 

Lake Michigan (Fitzsimons et al. 2007; Wolgamood et al. 2005). Egg thiamine 

concentrations in the Chinook Salmon were higher, on average, than those found 

previously in Lakes Ontario, Michigan, and Huron where averages ranged from 1.4 to 

2.1, 0.75 to 2.69, and 0.58 to 3.72 nmol/g, respectively (Fitzsimons et al. 2007; 

Wolgamood et al. 2005). Increased thiamine levels, relative to previously reported 

levels, suggested recruitment may be less affected by thiamine deficiency that results in 

early mortality syndrome. Similarly, Claramunt et al. (2012) showed an increasing trend 

in egg thiamine levels for Lake Trout in Lake Michigan since the late 2000s, which also 

indicated decreased thiamine deficiency. The increase for Chinook Salmon is specifically 

noteworthy, and somewhat unexpected, given Lake Michigan’s Chinook Salmon now 

have increased diet contributions from Alewives, particularly smaller-sized Alewives 

(Jacobs et al. 2013). Recent analysis of Lake Michigan Chinook Salmon diets suggest 

Alewives currently comprise over 90% of their diet compared to the mid-1990s when 

their diet was more diverse and Alewives comprised a smaller relative portion (Jacobs et 

al. 2013). Furthermore, Madenjian et al. (2006) reported a reduction in Alewife energy 

density which would require salmonines to consume approximately 20% more Alewife 

biomass to maintain historically observed growth rates. Taken together, one would 

predict that thiamine egg levels in Lake Michigan salmonids would currently be lower 

than historical measures. Future research will be required to determine what 

mechanism could be underlying increased egg thiamine levels in Chinook Salmon, but 

our data suggest that effects of early mortality syndrome on recruitment may be less 

severe now than in recent history.     

Similar to other published studies, we found thiamine levels were related to fish size. 

For all spawning populations of Chinook and Coho Salmon, we found decreasing egg 

thiamine levels with increasing female weight. Other studies have reported a negative 

relationship between egg thiamine levels and female weight in Atlantic Salmon Salmo 

salar (Werner et al. 2006), between liver thiamine levels and Chinook Salmon length 

(Honeyfield et al. 2008) and between muscle thiamine levels and Chinook Salmon length 



(e.g., Fitzsimons et al. 2012). Decreasing thiamine levels with increasing fish size has 

been attributed to the increasing proportion of Alewife in the diets as Chinook and Coho 

Salmon grow to larger sizes. 

Egg thiamine concentrations of Pacific salmonid species within Lake Michigan varied 

among population of different origins, and possibly between years within a population. 

Thus, given the limited spatial scale of our study (northeastern Lake Michigan), our 

results may not necessarily reflect lake-wide trends in egg thiamine concentrations. In 

2012, egg thiamine from a naturalized Chinook Salmon population exceeded that of a 

mixed population, and this pattern was repeated in 2013. In 2013, however, we also 

failed to detect a difference in egg thiamine concentrations between a pure hatchery 

population and either naturalized or mixed populations. One possible explanation is that 

population-specific differences in diet led to the observed differences in egg thiamine. 

An alternative hypothesis for future research is that naturalized populations have 

evolved some physiological capability to ameliorate the negative effects of thiaminase 

derived from Alewife, and that this adaption could be contributing to the increasing 

proportion of naturalized recruits in Lake Michigan over the past decade or so.   

Coho Salmon were analyzed only in 2013 and only from a hatchery stock, yet our results 

revealed egg thiamine concentrations that could be impacting egg survival. Coho 

Salmon egg thiamine concentrations were significantly lower than all Chinook Salmon 

populations we evaluated with an average value that fell between the ED20 and ED50, 

but was above the range (0.66 to 1.15 nmol/g) reported by Wolgamood et al. (2005) 

that resulted in EMS in offspring in the Platte River, Michigan. Interestingly, Wolgamood 

et al. (2005) proposed that an entire spawning population of Coho Salmon in Thompson 

Creek, a tributary to Lake Michigan, could have experienced complete recruitment 

failure due to low thiamine induced EMS.   

Our results suggest that management agencies could benefit from implementation of an 

egg thiamine monitoring program for species beyond Lake Trout. First, the ability for 

naturalized spawners to produce viable recruits to the fishery relies upon the ability to 

produce viable offspring. Having sustainable naturalized populations of desired Pacific 

salmon is a management goal in Lake Michigan (Eshenroder et al. 1995). Secondly, the 

harvest of eggs for hatchery propagation to support salmon stockings assumes that eggs 

will be viable for fingerling production. Of particular importance to our study, we 

included eggs harvested at the Little Manistee weir which is critical to Lake Michigan 

salmon propagation. In fact, Lake Michigan management agencies that desire stocking 

of Chinook and Coho Salmon primarily use eggs harvested at the Little Manistee weir in 

Michigan. Lastly, changes in the prey fish community in Lake Michigan could influence 



egg thiamine levels. As described above, changes in the abundance of Alewives and 

diets of Chinook Salmon may alter egg thiamine levels through time.   Depending on 

retention rates of thiaminase, increased consumption of Alewives by Chinook Salmon 

could enhance accumulation rates and potentially cause increased thiamine deficiency 

at younger ages. As the Lake Michigan food web continues to be modified by species 

invasions and changing nutrient dynamics, the implications of thiamine concentrations 

on Pacific salmon recruitment may continue to change. 

Stocked and naturalized Chinook Salmon in Lake Michigan have relatively short lives 

(maximum age of about five) that are influenced by environmental conditions and 

fluctuate with changing prey conditions (Warner et al. 2008). For the near future, the 

limited differences among Chinook Salmon populations we investigated suggested that 

fisheries managers and salmon anglers should expect similar trends in population 

characteristics. This is not to say that divergence in the future is not possible. Pacific 

salmon populations stocked in to New Zealand waters in the 1900s have seen 

divergence from their original stocked population, but this divergence occurred over a 

much longer time period compared to the residence time of Chinook Salmon in Lake 

Michigan (Kinnison et al. 2011). Therefore, it will be important to monitor for possible 

difference in the populations through subsequent generations and continue the current 

multi-agency mass marking program that allows delineation between hatchery and 

naturalized fish. 
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